

(MAC2/3.5b/254)

Forecasting products from atmospheric dust models
Agencia Estatal de Meteorología (AEMET)

JORNADA DE CLAUSURA 13 DICIEMBRE 2023 Reunión presencial, Gran Canaria

EL 85% DEL PROYECTO ESTÁ COFINANCIADO POR FONDOS FEDER

Gerardo García-Castrillo^{1,2} Ernest Werner^{1,2} África Barreto³

¹Barcelona Dust Regional Centre, Territorial Delegation of AEMET in Catalonia, State Meteorological Agency (AEMET) ²WMO Barcelona Dust Regional Center (AEMET-BSC) ³Izaña Atmospheric Research Center (IARC), State

Meteorological Agency (AEMET),

Santa Cruz de Tenerife

ÍNDICE

01

02

03

Tasks

PM10 Measuring Stations

Calitoo - AOD

04

05

06

Warning Advisory System (WAS)

Training Workshops (Online)

Conclusions

Tasks

Specific Objective 1:

Promote and develop a joint strategy that allows the climate change phenomenon to be monitored in a coordinated and precise manner within the cooperation space and to promote the production of scientific knowledge that helps to understand this phenomenon with the utmost precision.

Activity 2.1.2:

Increase the technical and human training of the actors responsible for the meteorological and oceanographic observation of the climate change phenomenon in the cooperation space.

GOAL:

To reduce the risk of the climate change through forecasting products from atmospheric dust models.

Main Tasks:

- Installation of a PM sensor and delivery of hand-held sun-photometers
- Development and Evaluation of an SDS Warning System for Senegal, Mauritania and Cape Verde
- Online training workshops

PM10 Measuring Stations

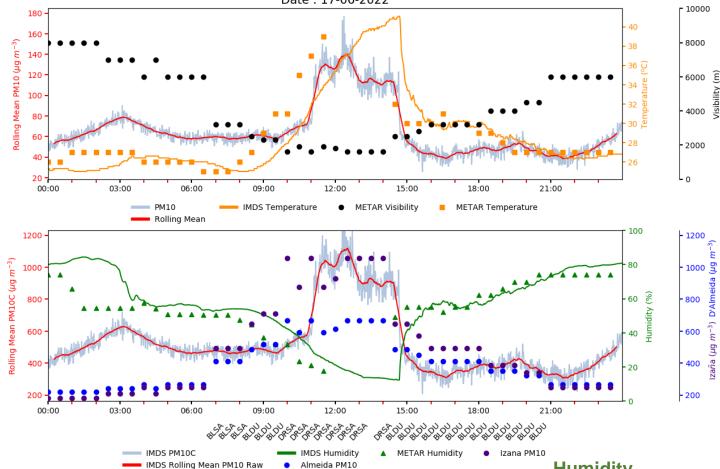
PM10 vs visibility from METAR **Bulletins**

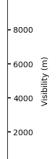
Tasks:

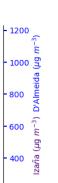
- Choosing the best low-cost sensor
- Sensor calibration

PM10 (PM10 measured)

Temperature METAR Visibility







Rolling mean (PM10)
Airport : GQNO Localization : Nouakchott
Date : 17-06-2022

Humidity

Concentration from METAR Visibility

PM10C (PM10 Calibrated) **Calibrated Rolling mean (PM10C)**

PM10 vs visibility from METAR **Bulletins**

NEW INSTRUMENT

Autonomous design:

- Solar panel
- SIM mobile comunication
- Easier to install and repair

Tasks:

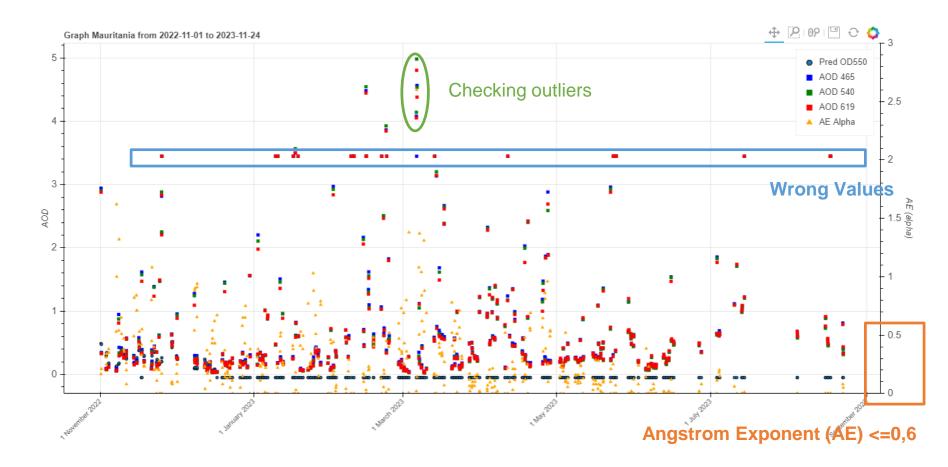
- Choosing the best low-cost sensor
- Sensor calibration

MAC 2014-2020 Cooperación Territorial

Calitoo - AOD

Aerosol Optical Depth (AOD) give us an idea of the total amount of aersols in the atmosphere.

The Angstrom Exponent (AE) give information about the aerosol size.



MAC 2014-2020 Cooperación Territorial

Calitto and AERONET measures

Differents Filters:

Obtain the greatest contribution of dust over the total aerosols.

AOD Daily MEAN AERONET and Calitoo stations Date: 20-02-2023

Nouakchott AE < 0.6 RAW X X ×× X-X - 1.2 AE1.2 = 0Coarse - 0.8 X X - 0.4 ×× X-X 0.69 - 0.2

Warning Advisory System (WAS)

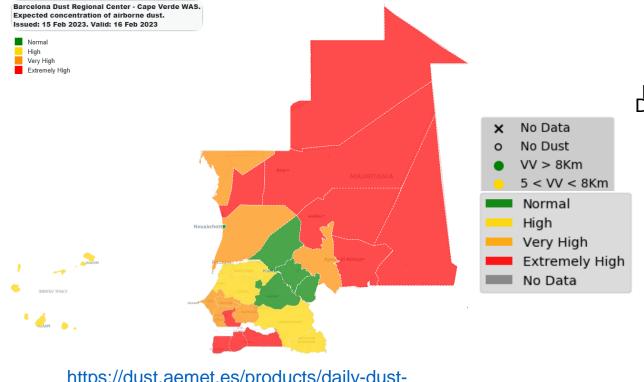
Warning Advisory System (WAS)

Verification:

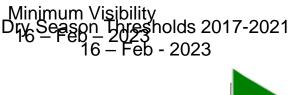
- METAR/SYNOP Visibility
- Dry Season 2017-2021

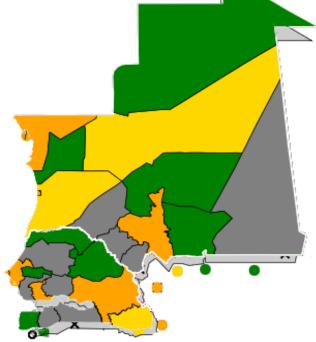
Conditions:

- RH < 70%
- Present Weather: DUST
- Daily visibility mean< 8km



Forecast 16 - Feb - 2023





Daily product for Mauritania, Senegal and Cape Verde. Also available for Mali, Burkina Faso, Niger and Chad (WMO CREWS)

Interreg

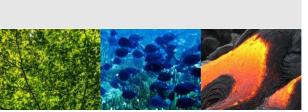
WAS Verification

SYNOP Visibility vs Surface Concentration (Multimodel)

Visibility and Concentration Thresholds from 2017-2022 data

Contingency table

OB\WAS	green	yellow	orange	red
green	0.0	44.44	13.89	0.0
yellow	11.11	13.89	0.0	2.78
orange	2.78	5.56	2.78	0.0
red	2.78	0.0	0.0	0.0


- Contingency table
- Define Index for evaluation
- No Green-Green days
- Bootstrapping
- Parameter dependency
- Comparison with Persistence

		350 -							h percenti mean squ	
Hits:	16.67 %	300 -								
Total-Hits :	25.0 %	ਨੂ 250 -								
Misses :	16.67 %	250 - 200 -								
Underforecasting :	22.22 %	150 -					6			
False Alarms :	58.33 %	100 -								
Overforecasting :	61.11 %									
		50 -	- L							
		0 0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
					M	ean square	Error			

OR/WA2	green	yellow	orange	rea
green	0.0	30.77	11.54	0.0
yellow	23.08	7.69	3.85	3.85
orange	15.38	0.0	0.0	0.0
red	3.85	0.0	0.0	0.0

Chi-squared test :	Dependent
Days :	171
Days OBS without green:	15
WAS MOD without green:	15
Days without green-green :	26
WAS mean square error:	2.15
Bootstrap mean square error:	2.42
The confidence interval 95%:	[1.46 3.46]
p-Value :	30.14 %
Thresholds Visibility(m):	3000 5000 600
Thresholds Models(ug/m3):	867 591 461

Hits :	7.69 %
Total-Hits :	15.38 %
Misses :	42.31 %
Underforecasting:	42.31 %
False Alarms :	42.31 %
Overforecasting:	50.0 %

Bootstrapping

2.0 2.5 3.0

Chi-squared test :

Days OBS without green:

WAS MOD without green: Days without green-green

Bootstrap mean square error:

The confidence interval 95%:

Thresholds Visibility(m):

Thresholds Models(ug/m3):

Days

ੋਂ 200 -

150 -

2.5th percentile

3.5

175

15

36 1.64

2.73

[1.81 3.69] 0.93 %

3000 5000 6000 867 591 461

WAS mean square error

Training Workshops (Online)

English, French and Spanish training workshops.

More info in:

https://dust.aemet.es/resources

MAC-CLIMA Workshop on SDS-WAS West Africa	Fecha
Senegal	Marzo 2021
Mauritania	Enero 2022
Cabo Verde	Febrero 2023

Atelier SDS-WAS Afrique de l'Ouest Sénégal, 3-4 Mars 2021

	Mercredi 3 Mars – Produits & Guide Prévision SDS		Jeudi 4 Mars – Instrumentation
9-10	Introduction WMO SDS-WAS	9-10	*Installation et utilisation d'instrumentation 1
10-11	Produits & Guide Prévision SDS	10-11	*Installation et utilisation d'instrumentation 2
11-11:30	Pause	11-11:30	Pause
11:30-12:30	*Méthodes d'observation	11:30-12:30	*Installation et utilisation d'instrumentation 3
12:30-13:30	*Vérification Produits	12:30-13:30	*Tutoriel et doutes

*Cours en anglais

English, French and Spanish training workshops.

More info in:

https://dust.aemet.es/resources

Conclusiones

PM10

- A new instrument, more autonomous and easier to repair and install, has been designed.
- Their autonomy allows us to install them in places without fixed internet network and power supply.

Calitoo

Calitoo photometers are a good complement to the AERONET network.

WAS

- A warning system has been developed that allows dust and sand events to be quickly evaluated.
- First administrative divisions are difficult to evaluate and forecast due to their heterogeneity.

Training Workshops

Dissemination of knowledge and prediction products available on the BDRC website.

Future Tasks

- Improve the forecast regions for the WAS.
- Monitoring PM10 data from new sensors.
- Expand the observation network to have data of dust events.
- Expand and improve the product catalogue, visibility probability maps, vertical profiles ...

Gracias

Obrigado

Merci Beaucoup

THANK YOU

